
I
I
I
I
I
I
I
1
I
1
I
I
I
I
I
i
I
I
I

Annual Progress Report

Award No. NAG-1-605

DETECTION OF FAULTS AND SOFTWARE
RELlABl L l T Y ANALYSIS

Submitted to:

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Attention : M r . Gerald E . Migneault
FCSD M/S 130

Submitted by :

J. C . Knight
Associate Professor

1NASA-Ci i -17S835) D E ‘ I E C T I G K GF F A U L T S Abi3 N87-12241
SOFTWARE R E L I A E I I I T Y ANALYSIS Annual
proqress R e p o r t (V i r q i r i a Utiv.) 3 4 p

CSCL 09B Unclas
G3/61 44672

Report No. U VA/528243/CS87/101

August 1986

4

r

,

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF V IRGINIA

CHARLOTTESVI LLE, V IRGINIA 22901

I

Annual Progress Repor t

Award No. NAG-1-605

DETECTION OF FAULTS AND SOFTWARE
RELlABl L I T Y ANALYSIS

Submitted to:

National Aeronautics a n d Space Amin is t ra t ion
Langley Research Center

Hampton, VA 23665

At ten t ion : M r . Gerald E. Migneaul t
FCSD M/S 130

Submitted by :

J. C. K n i g h t
Associate Professor

Department of Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCES

UNIVERSITY OF V IRGINIA

CHARLOTTESVI LLE, V I R G l N l A

Repor t No. UVA/528243/CS87/101

A u g u s t 1986

Copy No.

I

TABLE OF CONTENTS

I .

I I .

1 1 1 .

I V .

V.

V I .

V I I .

V I I I .

Page

. INTRODUCTION 1

FAILURE PROBABI LIT1 ES 4
5 CONSISTENT COMPARISON

. FAULT DESCRIPTIONS 6

COMPARISON TEST1 NG 7
. INPUT REGION CHARACTERISTICS 9

FAULT TOLERANCE THROUGH D A T A
23 DIVERS I T Y .

SEEDED FAULTS 25 .
. REFERENCES 31

SECTION I

INTRODUCTION

The work being carried out under this grant is an investigation of

software faults. The goal is to better understand their characteristics and to

apply this understanding to the software development process for crucial

applications in an effort to improve software reliability. Some of the work

is empirical and some analytic. The empirical work is based on the results

of the Knight and Leveson experiment [I] on IV-version programming. The

analytic work is attempting to build useful models of certain aspects of the

software development process.

I

Multi-version or N-version programming [21 has been proposed as a

method of providing fault tolerance in software. The approach requires the

separate, independent preparation of multiple (i.e. “N’) versions of a piece of

software for some application. These versions are executed in parallel in the

application environment; each receives identical inputs and each produces its

version of the required outputs. The outputs are collected by a voter and,

in principle, they should all be the same. In practice there may be some

disagreement. If this occurs, the results of the majority (assuming there is

one) are taken to be the correct output, and this is the output used by the

system.

The major experiment carried out by Knight and Leveson was designed

to study N-version programming and initially investigated the assumption of

independence. In the experiment, students in graduate and senior level

- 1 -

classes in computer science at the University of Virginia (UVA) and the

University of California a t Irvine (UCI), were asked to write programs from

a single requirements specification. The result was a total of twenty-seven

programs (nine from W A and eighteen from UCI) all of which should

produce the same output from the same input. Each of these programs was

then subjected to one million randomly-generated test cases. The Knight and

Leveson experiment has yielded a number of programs containing faults that

are useful for general studies of software reliability as well as studies of N-

version programming.

Our work has been in a number of areas and each area is covered

separately in this report. The specific topics are:

(1) an empirical study of failure probabilities in N-version systems,

(2) consistent comparison in N-version systems,

(3) descriptions of the faults found in the Knight and Leveson experiment,

(4) analytic models of comparison testing,

(5) charadteristics of the input regions that trigger faults,

(6) fault tolerance through data diversity,

(7) and the relationship between failures caused by automatically seeded

faults.

-2-

In most areas, the report provided here is quite brief since the details of

the research have been reported in published or submitted papers. These

papers have been supplied to the sponsor separately and are merely

referenced here.

-3-

SECTION II

FAILURE PROBABILITIES

Using the results of the tests performed in the Knight and Leveson

experiment, we have shown that the performance of multi-version systems

produced from the twenty-seven programs achieve a substantial reduction in

failure probability. Thus although the faults contained in the programs were

responsible for many coincident failures, there was still a substantial benefit

gained from using a multi-version structure.

The study of failure probabilities considered both two and three version

systems. Two version systems are important because they are being used in

production for error detection. We found that the two version systems

simulated from the available programs were able to correctly detect errors

when they occurred with a probability of approximately 0.995.

Three version systems provide fault tolerance as well as error detection.

For the programs in the sample, we observed a reduction in failure

probabilities of approximately one order of magnitude.

This work was reported at the Sixteenth International Symposium on

Fault-Tolerant Computing 131.

- 4 -

SECTION LII

CONSISTENT COMPARISON

We have identified a difficulty in the implementation of N-version

programming. The problem, which we call the Consistent Comparison Problem,

arises for applications in which decisions are based on the results of

comparisons of finite-precision numbers. We have shown that when versions

make comparisons involving the results of finite-precision calculations, it is

impossible to guarantee the consistency of their results. It is therefore

possible that correct versions may arrive at completely different outputs for

an application which does not apparently have multiple correct solutions.

There is no solution to the Consistent Comparison Problem and we have been

able to find only one technique for avoiding it. If this problem is not dealt

with explicitly, an N-version system may be unable to reach a consensus

even when none of its component versions fail.

A paper describing this work has been submitted to the IEEE

Transactions on Software Engineering [41.

- 5 -

SECTION IV

FAULT DESCRIPTIONS

Partly under this grant, we have documented the details of the faults in

the individual programs that were revealed by the testing 151. A total of

forty-five faults were identified in the twenty-seven programs. We have also

analyzed the interaction of each fault with each other fault, and shown that

there are a large number of fault pairs that exhibit statistically-correlated -

behavior. Since we now know the details of each fault, we have been able

to examine the faults that exhibit correlated behavior. We were surprised to

discover that in many cases there was no obvious similarity between faults

that exhibited correlated behavior. In practice, various different and

apparently unrelated faults were triggered by the same special situation in

the input. It is sensitivity to special cases in the input that causes

coincident failures and this sensitivity appears to be present in unrelated

faults. None of the faults that we observed was attributable to any aspect

of the development environment. We concluded that, for the particular

application used in the experiment, there was no obvious change that could

be made in the environment that would reduce the incidence of statistically-

correlated faults.

The detailed descriptions of the faults and the analysis of their

interactions is being prepared as a paper for submission to the IEEE

Transactions on Software Engineering.

- 6 -

SECTION V

COMPARISON TESTING

A common argument [61 in favor of at least dual programming (Le. N-

version programming with N = 2) is that testing of safety-critical real-time

software can be simplified by producing two versions of the software and

executing them on large numbers of test cases without manual or

independent verification of the correct output. The output is assumed correct

as long as both versions of the programs agree. The argument is made that

preparing test data and determining correct output is difficult and expensive

for much real-time software. Since it is assumed “unlikely” that two

programs will contain identical faults, a large number of test cases can be

run in a relatively short time and with a large reduction in effort required

for validation of test results. We refer to this approach as comparison resting

although it is also known as back-to-back testing in the literature.

Comparison testing has been criticized on the grounds that it tends to

reveal only those faults where the programs generate different outputs. Such

faults are inconvenient but not dangerous to an N-version system since they

will be detected and tolerated. Comparison testing will not reveal faults

that cause identical wrong outputs and it is precisely these that will not be

tolerated.

We have found that comparison testing is a very useful and cost-

effective method of fault elimination in multi-version systems. The reason is

that although two faults in different programs may cause coincident failures,

-7-

our experience has been that such faults do not dways cause coincident

failures. Thus there are occasions when only one of the two programs will

fail allowing comparison testing to detect the situation.

We have begun to analyze the performance of comparison testing. Our

approach uses Markov models of the fault location process. The models

associate states with the number of located faults and the order in which

they are found. Transition probabilities between states are just the

probabilities of finding particular faults on each test case. The expected

number of tests to locate each fault even for fauits that cause coincident

failures can be determined from such models. The preliminary model shows

that comparison testing is remarkably effective.

This work is incomplete but the initial simple models have been

documented in a PhD dissertation proposal [71. This document has been

supplied separately to the sponsor.

- 8 -

SECTION VI

INPUT REGION CHARACTERISTICS

Important information for modeling program errors is the shape and size

of the region of the input space that the faulty program maps incorrectly to

the output space. We term such a region of the input space an error region

or failure cry.s?d. In general, it is difficult to represent and display failure

crystals since the dimensionality of the input space may be quite large.

However, two-dimensional cross sections of a crystal developed using a

uniform grid are easy to obtain. For several of the faults identified in the

Knight and Leveson experiment we have obtained such two-dimensional cross

sections.

The following graphs represent two-dimensional slices of a region of the

input space for the Launch Interceptor problem ill. The regions were chosen

to include some points from the failure crystal of an error from a faulty

Launch Interceptor program; the graphs show the “shape” in two dimensions

of a set of points that were mapped incorrectly due to the presence of the

error under examination. The dimensions selected for examination correspond

to the (x, y) points provided as simulated radar images to the programs.

Since each point has two independent dimensions (one each for x and y), the

number of available dimensions is twice the number of data points. The

graphs shown were chosen because they exhibit interesting shapes of the

failure regions.

- 9 -

Each graph was built by forming a uniform grid in two dimensions

centered around an initial starting point in the input space. The initial

starting point was a failure point picked using data from the Launch

Interceptor Experiment. Because both failure information for a program and

the mapping of the input space to the output space are of interest, the

graphs show two bits of information per grid point. The first bit describes

whether the gold program and the faulty version agree at a grid point. The

second bit describes whether the gold program gets the same output as it did

on the initial data point; it illustrates the mapping of the input space to

different regions of the output space. Specifically, a “0” in the graph means

that the faulty version succeeded and the gold version obtained the same

output as on the initial point. A “1” indicates that the faulty version

failed and the gold version obtained the same output as on the initial point.

A “2” indicates that the faulty version succeeded but that the gold version

was in a new region of the output space. Finally a “3” indicates that the

faulty version failed and that the gold version was in a new region of the

output space.

.

The program errors corresponding to the shown graphs are errors 6.2

and 6.3 from the fault descriptions given in the Launch Interceptor

experiment 111. Error 6.2 is an error in the determination of the size of the

smallest circle containing three points. Error 6.3 is an error in which the

wrong subscript is given as an array index. The first 4 graphs correspond to

different cross sections of a single crystal for error 6.2; the remaining 7

graphs correspond to different cross sections of a single crystal for error 6.3.

Note that the first 4 graphs share a common point (the center point), as do

- 10-

I
1
t
I
8
I
i
I
I
8
I
1
I
I

I
I
I
8

a

the last 7. The spacing of the grid points is identical in all of the graphs

except for the first and the last. Grid points are spaced at 0.2 for the first

graph, 0.025 for the middle 9 graphs, and 0.000001 for the final graph.

- 11 -

6) 6) 6)
6)
6,
6)

Q W
Q 6)
Q W
Q W

'6) 6)
6)
Q
6)
6)

6)Q 0 Q 6) Q Q Q 6) 6)
6)

_
6)
6)
Q
6)

a,
6)
6)
Q

5
3
5
0
6)

Q
B
Q
6)

Q
0
0
Q
Q

e
6,
6)

6,
Q
Q
6)
6,

6) 6)
6)

616)
6) 6) 6) 6)

ZD
86)
6)Q
6)Q

Q
6)
Q
6)
6)

-
6)
6)
6)

a
6)
6)
6)

-

Q
6)
6)
6)
6)

s,
6)
6)
Q
E2

Q
Q

6,
6)
6)
6)
6)

66
6)Q
t30
6)Q

6)
a-6)

€3
6)

616)
6) Q ma

Q 6)
Q W
Q W

6)
6) 6)6)6) 6)

6,
Q
Q

6,
6)
Q
6)
Q

6,
Q
6)
Q
6,

6 6
6) Q
Q 6)
6) Q

-
6)
6,
6)
Q

_
6)
6)
B

-
6)
6,
6)
6)

Q
6)Q
6)o

Q
Q
Q
Q
m

a,
Q
Q
6)

_ _
6)Q
6)s
6)Q

6)
ZD 6)

Q
6)
6,

6)
Q

~

6,
6)
6)
6)

Q
6) Q 6)

6)
Q
6)
6)

6 1 . 3 6) a
61
Q
Q

Q
6)
6)
Q
Q

0
Q
Q
Q

GI 6)
6)
6)
6)
6)
6)
Q
6)
Q
6)
m
6)
F)
6)
Q

6)6)
Q Q
Q Q

-
Q
Q
Q
Q

6)
6,
6)
6)
6)
6)

6)
6)
Q
6)
6)
F)
6)
Q
Q
6)
Q

6)
6)
6)
6)
6)

6) Q
6)
6)
6)
6)
6)

_
6)
6)
6)
6)

0
Q
D
Q
Q

Q
Q
Q
Q

6)Q6) Q
?3

196)
Q Q G r

6) Q
Q
6)
Q
6)

6) 6)
6 6
Q 6)
6,6)
Fa6)

6)
-

6)
6)
6)
6)

-
6)
6)
6)
6)

Q
Q
Q
Q
6)

Q
Q
6)
6)

_
6)
6)
6)
Q

6)
6)
6)
6) €4 €46) 6)

1

a

I
I
I

NCUN
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N

d N N N
4 N N N

N N N
X N N N

N N N
C O N N N

N N N
N N N

X N N N
N N N

C N N N
O N N N

- - N N N
W N N N
C N N N
Q N N N
E N N N

- - N N N
W N N N

N N N
L N N N
O N N N
rcNNN

N N N
C N N N
Q N N N

W N N N

~ N N N

U N * N

"N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N , N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
NCVN
N N N
NCVN
N N N
NCVN
N N N
N N N
NCYN
N & N
N N N
N N N
N N N
N N N
NCVN

N N
N N
N N
N N
N N
N N
N N
N C Y
N N
W N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N

N N
N N
N N
N N
N N
C V N
N N
N N
N N
N N
N N
W C I
N N
N N
N C Y

N-N

N N N
N N N
N N N
N N N
N N N
N N N
N N N
C Y . N CY
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
"N
N N N
N N N
N N N
N N N
N N N
CYNN
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N

N N
N N
N N
N N
N N
N N
N N
C Y N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N

N
N
N
N
N
N
N

N N N
N N N
N N N
N N N
N N N
N N N
N N N
NCIN
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N

N N N
N N N
N N N
N N N
N N N
N N N
N N N
C Y C Y C Y
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N C J N
N N N
N N N
N N N
N N N
N N N
N N N
NNN
N N N
N N N
N N N
N N N
N N N

N N N
N N N
N N N
N N N
N N N
N N N
N N N
cyF(c-4
N N N
N N N
N N N
N N N
N N N
N C J N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N

N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
NNCV

h) Q Q Q Q
C Q
Q Q
O B
61q

Q Q 6) co
Q
5
Q
Q

N Q Q Q
N B Q Q
N Q Q Q
N Q Q Q
N Q Q Q
N n a Q

Q
c3

Q
Q
a
6)
Q
Q Q Q B

N
N
N

&Gee
N Q Q Q
N Q Q Q
N B Q Q N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
CV
N
N
N
N
N
N

Q
GI
6)
Q
Q
6)

Q Q e3
Q
Q
Q
Q
Q

N Q Q Q
N Q Q Q
N Q Q Q
N Q Q Q
N B Q Q
N Q Q Q
N Q Q Q
C - J Q Q Q
NQ 6) 6)
N Q Q Q
N Q Q Q
N Q Q Q
N Q Q Q

Q
Q
0
Q
0
Q

Q
a

Q
Q

Q
€2
Q
6)
6)
Q
Q

Q

N Q Q Q
N Q Q Q
N Q Q Q
N O Q Q
N Q Q a
(u b) 6) Q
N Q Q 61
N Q Q Q
N Q Q Q
N Q Q Q
N O Q 6,

Q
Q 6)

Q
Q
6)
Q
6)
Q
Q
Q
Q

Q Q

Q 6)
Q 8
Q Q

,

1
1

N N
N N
N N
N N
N N
N N

4 N N
4 N c4

N N
> N N

N N
(DNN

N N
N N

X N N
N N

C N N
O N N .- N c<
Y) N N
C N N
Q N N
E N t r , .- N N
-0"

N N
L N N
O N -

+ N N
N N

C N N
B N N
U N N

r n ~ w

n w w

N N N
N N N
N N N
N N N
N N C l
N N - N
N N N
N N N
N N N
N N N
N N N
N N C :
NCVN
N N N
N N N
NCUN
N N W
N N N
N N N
N N N
N N N
N N N
N N N
N N N
N N N
NNCU
N N p 1
N N N
N N N
N N C l
N N N
N N N
N N N
N N N
NNCU

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N N N
N N N
N N N
N N N
N N N N
N C V N N
N N N N
N N N N
N N N W
N N N N
N N N N
N N N Q
N W N Q
N N N Q
N N N.Q
N N N Q
N N N Q
N N Q Q
N N Q
N-N Q
N N Q
N N Q
N N Q
N N Q
N N Q
W N Q
N N Q
N N Q
N N Q
N N Q
N N Q
N C V Q
CUNQ
N N Q
N N Q . .

N N N
N N
N N
N Q
N Q
N Q
N Q
Q Q
Q Q
662
Q Q
m a

61
Q
6)
Is)
Q Q B

a,
Q
6)
Q
Q

Q 6
Q Q
Q Q
Q B

a,
6)
Q
B
Q

a,
Q
Q
B
6,

Q 5,
Q
5
Q
Q

h,
Q
Q
Q
Q

N
.N
N

~

Q
6'
Q
Q

Q Q
Q6,
Q 8

Q Q
6) B Q Q

Q Q
Q Q
Q Q
Q Q
Q Q

G1 m Q G Q Q
6
Q
Q
Q
Q

B Q Q
Q
Q
Q
Q
Q

Q
Q
6,
3
Q
Q

9
6,
E'
9
Q
6)

66
Q Q
Q Q
Q Q
Q Q
Q Q Q 6)

Q Q
Q Q
Q Q
Q Q
Q Q

Q 6) B 6) Q Q Q Q 6) 5 Q ~

Q
Q
Q
Q

Q Q
Q Q
Q Q
Q Q
Q Q
Q t 3
Q Q
Q B

Q
B

Q
B

tiQ
Q Q
Q6)

6 a
'9
Q
F3
Q
Q Q Q 6

s c
Q G
Q t
6)c
Q C
Q G

~

Q
9
6,
Q
Q

Q
Q m
5 N

N
cy

Q
Q
Q

Q
599g Q a , Q

Q Q
Q Q
Q Q
Q Q

86) D
Q
G
Q
6)

6) G Q
G Q
G Q
6 0
G Q

N
CJ
N
N

Q Q a
Q
B
B

66
Q Q
Q Q
Q Q

6
6
Q
Q

SG
9 G
tQc
Q G

_
9
.9
Q
B

6,
Q
Q
6

a,
Q
Q

_
Q
Q
Q

i
I
I
I
I
I
I
I
I
1
I
1
I
I
I
I
1
1
-I

I
I

Q Q Q Q Q
6 ' Q Q Q
Q Q Q Q

Q
Q
Q

Q
m

Q Q Q Q O

Q
Q
Q
0
Q

Q Q Q Q Q

Q Q Q B
s

Q B
N
N
N
N
N
N
N
N
N
N
N

N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N

N
N
N
N
N
N
N
N
N
N
cy
01

B
Q
6)
Q
Q

a
Q
Q
&l

a
Q
6)
Q
Q

Q Q Q Q Q O Q N N Q Q Q
"NQQ
N N N 6 , Q
N N N N Q
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N "
N N N N N
N N N N N
NNCUNN
N N N N C 4
N N N N N
N N N N N
N N N N N
N N N N N
N C * r N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N "
N N N N N
N c . (N N N
N N N "
N N N N N
N N N N N
N N N N N
N N N N N
"NNN
N N N N C U
N N N N N
N N N N N
N N N N N
C V N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N e J c 4
N N N N N
N h N N N
N N N N N
N N N N N
CULXNNN
N N N N N
" N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N N N N N
N C U N N N
N N N N N
" N N N
N N N N N
N N N N N
N N N N Q
N N N N Q
N N N Q Q
N N Q Q Q
N N Q Q Q
N Q Q Q Q
Q Q Q Q Q
Q Q Q 6 , Q
Q Q Q Q Q
Q Q Q Q Q
Q Q Q Q O

Q
Q 6)

S a
El
Q
N

Q Q Q Q Q 6) Q

Q Q G Q Q Q Q Q N
Q Q Q Q Q Q N N N N N N N N N N N
Q Q Q Q Q Q N N N N N N N N N N N
6) C 6) 6, 6, N N N cu N N N N N cu N N
W Q 6) Q Nh: N N N N N N Cd NN
Q B Q 6, N N N N N N N hi N N N N N

Q Q Q Q N N N N N N N N N N N N N N
Q Q Q N N N N N N N N N N N N N N
Q Q N N N N N N N N N N N N N N N
Q N N N N N N N N N N N N N N N N
Q N C U N N N N N N N N N N N N N N
N N N CV N N N N N N N N N LU N fi N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N c.r N N N N N N N CJ N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N " N N N N r 4 N N N N N N
N N N N N N N N N N N N N N N N N
N N N N CJ N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N CJ N N N N N

N N N N e4 N N CJ cu N N N N N N N N
N c4 N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
N N N N N N N " N N N F I N N r 4 N
N N N N N N N h N N N N N N N N N

N N N N N N N N C U N N N N N N N N

N N N N N N N N N N N N N N N N N
N N N N N N CV CJ N N N N N N N N N

N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N
Q N N N N N N N N N N N N N N N N

Q Q N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N N

Q a N N c+ c.; N N N N N N N N N N N

6 2
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
.SI
N
N
N
N
CU
N
N
N
N
N

Q
Q
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
cu
N
cu
N
Q
6)
Q
Q

N
N
N Q

0 N
N
N
N
N
N
cu
N

N N N
N N Q
N N Q
N Q Q

D Q Q Q Q a
Q
Q
0
Q
Q

W

Q Q Q Q
0
0
Q
6,
Q
Q

X
6 Q Q Q

u)
C
0

Q D

.-
Y)

C
0
E .- Q

Q
Q
Q
€2
Q

Q

L
0
4-

c
a
0
91

6)

Q Q Q
Q Q Q

Q Q Q
B Q Q

Q
6, Q Q Q Q

SECTION VI1

FAULT TOLERANCE THROUGH DATA DIVERSITY

We have proposed a new approach to software fault tolerance that we

term d d a diversity. Fault tolerance has been attacked in the past through

design diversity. We suggest that it might be achieved through diversity in

the data.

The basis of the approach is to execute several copies of a single

program but supply each with slightly different data. The idea of executing

multiple copies of a single version of software has been rejected by others as

pointless. The argument for rejection is that if one copy fails they will all

fail. We wonder however whether with slightly different inputs this might

not be a useful approach.

. In fact, a variant of this approach has been suggested and tried by

industrial software developers. Their approach is to use conventional N-

version programming but to stagger the times at which the versions read

sensors so that they will each receive slightly different data values. In

practice, it is not necessary or even beneficial to use different versions and it

is not necessary to await changes in the data over time. The changes can be

computed.

There have been no analyses or experiments performed to evaluate the

performance of either the industrial approach or our proposed data diversity.

We have begun analytic and simulations studies of both and have very

- 23 -

I
8
i
1
1
I
1
t

encouraging but preliminary results.

- 24 -

SECTION VIII

SEEDED FAULTS

In the N-version programming method, separate development is intended

to eliminate the sharing of (mis)understanding of the application; it associates

independence of program failures with mutual isolation of the program

designs. However, separate development has no effect on errors unbiased by

knowledge of the application. For example, a programmer may inadvertently

misorder certain steps in a computation or reverse the use of “and” and “or”

in a conditional expression. The important characteristic of these errors is

that they are not specific to the application. The separate development

process does not affect their introduction. We have examined whether

unbiased errors play any role in the expected independence of the resulting

programs.

We have adopted an operational definition of independence: failures of

two programs are dependent if a statistical measure shows a correlation of

incorrect outputs for a given input. That is, programs that fail together

significantly more often than expected are considered to contain dependent

errors. How dependent errors are introduced does not affect the operational

viewpoint of independence’. The statistical measure used here, a 9 test of

an independence hypothesis, is the same as has been applied in [51. A

hypothesis that two programs fail independently is formed and the 2

1 we note that other authors use different definitions of independence, for example [SI.

- 25 -

statistic is generated.

level, dependence is assumed.

When the hypothesis is rejected with a high confidence

As part of a separate project we have performed an experiment in error

seeding. Seventeen of the twenty-seven programs produced in the Knight

and Leveson experiment were selected at random, errors were seeded into all

seventeen, and the resulting programs were tested. The algorithms used for

seeding errors were very simple: 2 algorithms modified the bounds on for

statements, 3 algorithms modified the Boolean expression in if statments, and

1 algorithm deleted assignment statements. Each of these aigorithms was

applied 4 times to each of the 17 programs for a total of 408 modified

programs, each of which contained one seeded error. It should be stressed

that the seeded errors were introduced at random without using any semantic

knowledge of the program structure. To introduce one seeded error, a

syntactic structure was selected a t random and the seeding algorithm was

applied. The seeded errors are unbiased errors.

To select seeded errors to be investigated for dependent failures a form

of acceptance testing was used: seeded errors with a mean time to failure

smaller than a certain threshold were disqualified from the experiment. In

addition, seeded errors which caused no failures during the original error

seeding experiment were also disqualified. 45 of the 408 seeded errors passed

this acceptance test. Such an acceptance test is equivalent to the original

acceptance testing done to admit the launch interceptor programs to the

original N-version experiment. In this experiment all indigenous errors were

fixed before the seeded errors were installed in the programs. Each failure

- 26 -

of a given program is caused only by the seeded error.

The 45 seeded programs were run over a 45,000 test case subset of the

1,000,000 randomly generated test cases used in the N-version experiment [l].

Figure 1 summarizes the results of the test cases. The graph is a 45 by 45

symmetric matrix, the upper half of which is shown. The (i, j) entry in

the matrix describes failure on common test cases between program i and

program j.

The programs are split into three categories according to the type of

seeded error used to generate the program. The divisions are shown by lines

on the graph. The first 13 programs contain for statement seeded errors, the

next 29 contain if statement seeded errors, and the last 3 programs contain

assignment statement seeded errors.

The programs are ordered within the divisions by type so as to make

the nonzero elements cluster near the diagonal. The reordering results in

“blocks” of entries on the diagonal. Each block indicates that the

corresponding programs all fail together on a certain subset of test cases.

Note that the reordering has no effect on the entries in the matrix; only the

visual appearance has been altered. The reordering is done to show that

common failures tend to group together.

A 2 test was used to test the hypothesis that each pair of programs

fails independently. On the

graph, an “R” indicates that the independence hypothesis is rejected with a

confidence of 99.5%. An “I” indicates that insufficient data (less than 5

The results of these tests appear in Figure 1.

- 27 -

common failures) existed to make the 2 test meaningful. An “N” indicates

that the independence hypothesis is not rejected. Notice that although the

graph does not contain any “N” entries, blank entries, which represent zero

common failures, may be interpreted as likely “N” entries. Since all 45 of

the seeded programs were produced by seeding errors into 17 original

programs, there are entries in the matrix corresponding to two distinct seeded

errors being evaluated in the same base program. Since this situation does

not reflect accurately a scenario possible in the separate development of

programs, these entries are marked in lower case “f’, “i”, and “n”,

respectively.

An examination of figure 1 shows that within a category of seeded

error, dependence among errors is common. No dependence has been

demonstrated among different categories of seeded errors, although the graph

suggests that more testing might reveal such a dependence. It is clear that,

for this example, dependence among errors of the same category is more

likely than dependence among errors of different categories.

Informally, unbiased errors are the “best” errors that can be hoped for

in a separate development environment. Unbiased errors model program

defects that are free from influence propagated among the development teams.

The experiment shows that unbiased errors do not, in general, cause

independent failures. Each separate development process employs similar

tools (loops, decisions, and sequences) to solve the same problem. The

experiment shows that similar misuse of programming tools results in

programs with similar faults. The implication for N-version programming is

- 28 -

that care must be taken to ensure that separately developed programs

actually are independent, or, more realistically, that expected dependence

among t h e N versions be taken into account.

- 29 -

d
d I

d
d I I

d I
d

d r i I R R
d r R I R R

d R I R R
i f e r r o r s d I R r

d R I I
d R I

d
d

d
d R R R R R

d R R R R R
d R R R R R R

d R R R R R
d r r R R

d r R R
d R R

d R
d

d R R R
d R r R

d R R
f o r e r r o r s d R

d
d R R R R I I

d R R R i I
d R r R R R R

d R R R R r
d R R R R

d R R R
d R R

d R R R R r I
d R R R R I

d R R R
d r R

d R I
d

d
assignment e r r o r s d

K E Y
R. r - Reject independonce
I. i - I n s u f f i c i e n t data
N, n - independence Not re jected

d - diagonal element
upper case - seeded e r r o r s i n d i s t i n c t programs
lower case - seeded e r r o r s i n same program

I 1
I 1
i
I 1

I
I
I
I

I
i I

d

Figure 1: Results of Independence Hypothesis Test

REFERENCES

(1) J.C. Knight and N.G. Leveson, “An Experimental Evaluation Of The

Assumption Of Independence In Multi-Version Programming,”, IEEE

Trans. on Software Engineering, Vol. SE-12, No. 1, January 1986.

(2) L. Chen and A. Avizienis, “N-Version Programming: A Fault-Tcxance

Approach To Reliability Of Software Operation”, Digest of Papers ZTCS-8:

Eighth Ann& International Conference on Fa& Tolerant Computing,

Toulouse, France, pp. 3-9, June 1978.

(3) J.C. Knight and N.G. Leveson, “An Empirical Study Of Failure

Probabilities In Multi-Version Software”,

(4) S.S. Brilliant, J.C. Knight, and N.G. Leveson, “The Consistent Comparison

Problem In N-Version Software”, submitted to IEEE Trmactions on

Software Engineering.

(5) S.S. Brilliant, J.C. Knight, and N.G. Leveson, “Analysis Of Faults In A

Multi-Version Software Experiment”, in preparation.

(6) C.V. Ramamoorthy, Y.R. Mok, E.B. Bastani, G.H. Chin, and K. Suzuki.

“Application Of A Methodology For The Development And Validation Of

Reliable Process Control Software,”, IEEE Trans. on Software Engineering,

vol. SE-7, no. 6, pp. 537-555, Nov. 1981.

-31 -

1
I
I
R
1
I
1
I
i
1
I
I
I
S
I
I
I
1
I

(7) S.S. Brilliant, “Testing Multi-Version Software”, Ph.D. Dissertation

Proposal, University of Virginia, June, 1986.

(8) A. Avizienis “The N-Version Approach To Fault Tolerant Software”,

IEEE Transactions on Software Engineering, Vol. SE-11, No. 12 (December

1985).

- 32 -

